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Abstract 

 
The TREC 2018 Precision Medicine Track largely repeats the structure and evaluation of the 2017 track. The collection 

remains identical. Again, our team participated in the both tasks of the track: 1) retrieving scientific abstracts addressing 

relevant treatments for a given case and 2) retrieving clinical trials for which a patient is eligible. Regarding the retrieval of 

scientific abstracts, we queried all abstracts concerning one of the entities of the topic (i.e. the disease, the gene or the 

genetic variant) using various strategies (e.g. search in annotations of the collection, free text search using or not using 

synonyms, search in the MeSH terms, etc.). Then, for a given topic, the complete set of abstracts was based on the generation 

of different queries with decreasing levels of specificity. The idea was to start with a very specific query containing gene, 

disease and variant, from which less specific queries would be inferred. Abstracts were then re-ranked based on different 

strategies to favor abstracts that we considered more relevant to the given task. In 2017 we tested the use of drug densities 

to identify abstracts related to treatment. For this year we refined this strategy by giving more weight to drugs related to 

cancer treatment. Secondly, we used demographic information to favor abstracts concerning patients of the specified age-

group and gender, and disfavoring abstracts targeting other age-group or gender patients. For the third strategy we utilized 

a word-level convolutional neural network to increase the rank of abstracts related to precision medicine. The fourth strategy 

consisted to expand the query to parent and children diseases. Finally, we tested an exact run which only retrieved abstracts 

respecting all information given in the topic. Results showed that all strategies but the last one resulted in some improvement 

of the retrieval power of the engine. As expected, our final run, focusing of precision, resulted in our best results regarding 

precision at rank 10, while other measures were negatively impacted. Regarding the retrieval of scientific abstracts, we 

boosted our last year’s approach – which achieved competitive results – with supplementary strategies issued from other 

participants. Regarding the retrieval of clinical trials, we investigated filtering strategies for managing the condition 

(disease), and standard information retrieval for managing the gene and genetic variant. The results show that, despite the 

presence of a structured condition tag in the document, better performances are obtained when relaxing constraints: using 

synonyms and detecting the diseases in various fields, such as the summary. 

 

 

 

Introduction 

The SIB Text Mining group [1], at the Swiss Institute of 

Bioinformatics in Geneva, has a long history of 

participation in TREC campaigns, including TREC 

Genomics [2], TREC Medical Records [3], TREC 

Chemical IR [4], TREC Clinical Decision Support [5 ,6] 

tracks and the TREC 2017 Precision Medicine Track [7]. 

In parallel, the group is currently involved in several 

research projects, including the Swiss Variant 

Interpretation Platform for Oncology (SVIP-O), which 

aims at providing a centralized and curated database for 

clinical somatic variants providing from Swiss hospitals 

and related institutions.  

 

The TREC 2018 Precision Medicine track focus on the 

identification of scientific articles and clinical trials, 

regarded as useful for clinicians treating cancer patients. 

The structure and evaluation for TREC Precision 

Medicine 2018 are largely repeated from the previous 

year. The collection remained identical. Similar to the 

2017 track, the topics consisted of a disease, one or more 

mutated genes and some demographic information. 

Again, two tasks were proposed: 1) the retrieval of 

scientific abstracts and 2) the retrieval of clinical trials. 

Our team participated in both challenges. This year, 

training data from TREC 2017 Precision Medicine (i.e. 

2017 topics and relevance judgments) were available to 

prepare the runs. The runs of TREC 2018 Precision 

Medicine were then evaluated by a pool of clinicians that 



judged the relevance of a subset of the submitted 

documents.   

 

For producing the runs for the scientific abstracts task, 

similarly to 2017, we developed a core system, based on 

a set of queries, each differentially weighted. Assuming 

this strategy would enable us to retrieve a large subset of 

relevant abstracts, we then applied different strategies to 

work on the ranking of the retrieved abstracts. Successful 

strategies from 2017 were reused with some additional 

investigation, such as boosting cancer-related drugs for 

the re-ranking based on drug occurrences. Moreover, 

additional strategies were tested: i.e. use of demographic 

information, development of a precision medicine 

classifier and use of an exact match run. 

 

For producing the runs for the clinical trials task, our 

strategies mainly focus on exploiting different fields of 

the documents – especially conditions and summary – for 

filtering or retrieving the query information. Diseases in 

both the collection and topics were normalized thanks to 

the NCI Thesaurus, then used for filtering unrelated trials. 

In the same way, demographic features were normalized 

then used for filtering. Then, a search engine was used for 

finding relevant trials according to the genes information. 

Compared to the 2017 campaign, we also performed 

boosting scores of retrieved trials according to phases, 

primary purposes, and study types. Boosting values were 

computed with last year gold file distribution. 

 

1. Data 

The Precision Medicine track provides two collections, 

one for each task: scientific abstracts and clinical trials. 

Both tasks share a common topics set. 

1.1 Scientific abstracts 

The scientific abstracts collection is composed of a 

snapshot of PubMed abstracts (January 2017) together 

with additional abstracts from AACR (American 

Association for Cancer Research) and ASCO (American 

Society of Clinical Ontology) proceedings. The XML 

version of the PubMed collection is used. It contains 

26,670,000 abstracts, corresponding to 26,669,401 

unique PMIDs. The latest version of a duplicated PMID 

is used. Title, abstract, publication date, publication types 

and MeSH terms are extracted for each abstract. AACR 

and ASCO abstracts are provided as TXT file. They 

contain respectively 33,018 and 37,007 abstracts. Only 

title, abstract and publication date are available for this 

subset. 

1.2 Clinical Trials 

The scientific abstracts collection is designed from a 

snapshot of ClinicalTrials.gov (April 2017). 

Approximately 240,000 clinical trials populate the 

collection. All trials are in XML format, and thus have – 

theoretically – a formal structure: information is stored in 

dedicated sections, such as the study phase, the sponsors, 

the design of the study, or the eligibility criteria. Some 

sections contain formatted fields (such as demographic 

conditions) while much contain free text.  

1.3 Topics 

The topics set consists of 50 semi-structured synthetic 

cases created by precision oncologists at the University of 

Texas MD Anderson Cancer Center. Each topic consists 

of the disease, genetic variants, and demographic 

information. While in topics of 2017, a “other” field was 

provided, mentioning other potential factors that may be 

relevant for the case, this field was retracted for 2018 

topics. 

 Ontologies and resources 

Several publicly available ontologies and resources have 

been used for developing our systems.  

neXtProt [8] is a comprehensive human-centric discovery 

platform, developed by the Swiss Institute of 

Bioinformatics. With more than 20,000 proteins manually 

annotated, neXtProt provides high-quality synonyms for 

both protein and gene names. We used this resource for 

normalizing gene names.   

The NCI Thesaurus (NCIt) [9] provided by the National 

Cancer Institute, is a reference terminology for 

biomedical coding, broadly used by both public and 

private care actors. This terminology covers clinical care, 

translational and basic research and public information 

and administrative activities. We used this resource for 

disease mapping, as it contains information for nearly 

10,000 cancer and related diseases.  

The Medical Subject Headings (MeSH) [10], provided by 

the US National Library of Medicine, is a controlled 

vocabulary used for indexing articles in MEDLINE. The 

MeSH is known for being less granular than specialized 

ontologies such as the NCIt, but also for being easily 



identified by Natural Language Processing, thanks to 

synonyms.  

DrugBank [11] is a database containing biochemical and 

pharmacological information about drugs and drug 

targets. DrugBank includes more than 10,500 records. It 

also provides a high number of synonyms, as well as 

products names. 

2. Strategies 

In this section, we describe the strategies applied for each 

task.  

2.1 Scientific abstracts retrieval 

We participated in the scientific abstract task for the 

second time. We reused successful strategies tested last 

year and tried to improve them with some new ideas. 

Again, we have submitted five runs. The topics and 

relevance judgments of 2017 have been used as training 

data.  

Again, we annotated diseases, genes and drugs within the 

whole collection, based on existing terminologies (i.e. 

NCIt for diseases, UniProtKB for genes and DrugBank 

for drugs). These annotations were then indexed together 

with the title, abstract, publication date, publication types 

and MeSH terms for each document. Solr Apache 7.3.1 is 

used for indexing and retrieval.  

2.1.1 Baseline 

We consider a topic to be constituted of three elements: a 

disease, one or several genes and one or several variants 

(e.g. an amino acid change). The gene or the variant can 

be missing (e.g. topic number 37 has no variant and topic 

number 20 has no gene). When several genes and/or 

variants are present, we treat each of them as a subtopic 

and merge the set of abstracts retrieved for each subtopic 

to define the final set of abstracts for the topic.  

First, our system retrieves all the abstracts concerning one 

element of a topic (or subtopic). This search is based on a 

set of queries: the exact term is searched in the title of the 

abstract, in the core of the abstract, in the MeSH terms 

assigned to the abstract, in our annotations of the title of 

the abstract and in our annotations of the core of the 

abstract. Moreover, all queries are also performed using 

synonyms of the term. All the retrieved abstracts for a 

given element are then merged together, with different 

weights depending of the query providing the abstracts 

(e.g. the element was retrieved in the title using its main 

term; the element was retrieved in the abstract using a 

synonym). Tuning of the weights given to each query has 

been defined using the topics and relevance judgments of 

2017. 

Synonyms of genes are generated using UniProtKB 

terminology, while synonyms of diseases are retrieved 

using NCIt. Regarding variants, a synonym list has been 

manually created for copy number variants (e.g. 

amplification), while a SNVs synonym generator has 

been developed for single nucleotide variants. Given 

variant information (i.e. the gene name and the amino acid 

change), the SNVs generator produced the standard 

nomenclature format at the protein level as described by 

the Human Genome Variation Society (HGVS) [12]. 

When a corresponding dbSNP ID was found through 

neXtProt, the HGVS standard description was also 

generated for the transcript and genomic DNA 

description levels. Additionally, non-standard formats 

found in the literature [13] were generated for these 

different levels of description. It included at the protein 

level the use of single and three letters amino acid codes 

(e.g. Val600Glu) as well as hyphens and greater-than 

characters (e.g. V-600-E). At the DNA level, the use of 

hyphens along with greater-than characters was proposed 

(e.g. 1799T->A). When found, the dbSNP ID was also 

used as a synonym - although dbSNP is more likely to be 

impactful for germline variants than somatic variants. 

Second, our system generates a set of different queries 

with decreasing levels of specificity. Indeed, our 

assumption is based on the fact that an abstract of interest 

may sometimes not mention the specified variant, but for 

instance another variant affecting the gene in a similar 

manner. Similarly, an abstract about the variant of interest 

for another cancer type may still be valuable from a 

clinical point of view. Additionally, such strategy might 

compensate the failure to collect abstracts about one 

specific element. Therefore, our approach is based on the 

generation of a set of four queries: 

- Query 1: Disease + Gene + Variant 

- Query 2: Disease + Gene 

- Query 3: Gene + Variant 

- Query 4: Disease + Variant 

Thus, our system merges the abstracts common to the 

elements of the query. For instance, for the query number 

2, the final set of abstracts is the union 

(abstractsSet_disease ∪ abstractsSet_variant) of the 

abstract retrieved for the disease and the abstract retrieved 

for the variant. Results for the four queries are then 

merged together through linear combination. Each set of 

results is differentially weighted.  

This strategy aims at retrieving a maximum of relevant 

abstracts. We then apply additional strategies in order to 

re-rank the abstracts. 



2.1.2 Drug density 

Similarly to last year, our first run (SIBTMlit1) assumes 

that an abstract with a high frequency of drug names is 

probably more relevant to support our task, which 

consists to retrieve existing knowledge in the scientific 

literature regarding treatment of cancer. We thus use the 

pre-annotation of the abstracts with DrugBank to estimate 

the drug density of a publication (i.e. the number of 

occurrences of drug names in the abstract and title). This 

year, we tried to favor density of drugs related to cancer 

treatment. For this, a list of 384 DrugBank records has 

been defined based on different resources: cancer-related 

categories provided by DrugBank (e.g. Antineoplastic 

agents), the Cancer Drugs List provided by the National 

Cancer Institute [14], the List of Cancer Chemotherapy 

Drugs provided by the Navigating Care [15] and the Oral 

Chemotherapy Drugs List provided by CareFirst [16]. 

Results from the baseline run are re-ranked based on the 

number of occurrences of drug names per abstract, with a 

stronger weight for drugs from the cancer-related list. We 

also investigate attributing different weights whether the 

drug name is found in the title or in the core of the 

abstract. 

2.1.3 Demographic density 

While demographic information was not used last year, 

we investigate re-ranking abstracts based on gender and 

age-groups. MeSH terms are used to determine the 

demographic categories of the abstract. Run 2 

(SIBTMlit2) is based on the re-ranking of the run 1 based 

on demographic information. For each abstract returned 

in our run 1 (SIBTMlit1), we attribute a score based on the 

sum of the age and gender scores as described in Table 1 

depending if the abstract matches, does not match or does 

not discuss the topic’s demographic information. We then 

defined the weight attributed to this re-ranking based on 

the tuning set.  

Abstract Age Gender 

Match 0.5 0.5 

Does not match -0.5 -0.5 

Does not discuss 0.25 0.25 

Table 1 Score attributed to an abstract 

2.1.4 Precision medicine classifier 

In results from 2017, we observed that a large set of 

incorrect results were abstracts that were not concerning 

precision medicine. Last year’s strategy to determine if an 

abstract concerned precision medicine consisted of a 

manually-defined list of keywords considered as relevant 

or not relevant to distinguish between precision medicine 

and not precision medicine. This year, we ties leveraging 

the large training set available from last year to build a 

binary classifier. We developed a 2-layer convolutional 

neural network [17] on top of word embeddings 

developed specifically for Biomedical NLP [18]. For 

training and evaluation, we used the PM assessment from 

the TREC 2017 evaluation. Run 3 (SIBTMlit3) is based 

on the re-ranking of the run 2 (SIBTMlit2) based on the 

probability that an abstract concerns precision medicine. 

The weight attributed to this re-ranking is based on the 

tuning set.  

2.1.5 Hierarchical query expansion 

Last year, we assumed that an article targeting a more 

general (supertype) or more specific (subtype) cancer 

type may still be valuable from a clinical point of view. 

We used the simplified hierarchy provided by NCIt [19], 

which only includes concepts in the Neoplasm by Site and 

Neoplasm by Morphology categories. This year, we 

refined this strategy by attributing different scores to 

supertypes and subtypes, as well as the localization of the 

disease term (in the title or in the core). Run 4 (SIBTMlit4) 

is based on the linear combination of the run 3 

(SIBTMlit3) and the run generated by expanding diseases. 

The weight attributed to each parameter of this re-ranking 

is based on the tuning set.  

2.1.6 Exact run  

While previous strategies attempt at maximizing the 

recall, this run (SIBTMlit5) aims at maximizing the 

precision. Indeed, we tries to retrieve abstracts fully 

respecting the topic: the disease is the same (or more 

specific), the gene and variant are the same and the 

demographic information are either respected or not 

discussed in the abstract. If this exact run returns less than 

1000 results, abstracts returned by run 4 (SIBTMlit4) are 

pushed afterwards.  

 

2.2 Clinical trials retrieval 

For the retrieval of clinical trials, we also reused 

successful strategies investigated in 2017. These 

strategies mostly rely on a succession of Information 

Retrieval and filtering steps. 

 

We submitted three runs. 

 

Trials were first filtered according to condition (detected 

disease). For detecting diseases, we exploited the 

concepts, synonyms and hierarchy of the National Cancer 



Institute (NCI) Thesaurus in order to match concepts in 

both the topics and the trials. Different sections of the 

trials were considered: conditions, mesh_conditions, and 

keywords. In the 2017 campaign, we assumed that a 

relevant trial should have the corresponding query disease 

in condition. The results showed that we were far from 

truth, as many relevant trials – or judged as relevant – did 

not contain the query disease in the condition; the 

condition was often stored in free text, or in inadequate 

sections. Thus, this year, we also detected conditions in 

title and summary for one run (run SIBTMct1), in order 

to relax constraints. 

 

Trials were also filtered according to the demographic 

features. This information is perfectly encoded in trials. 

 

Then, Information Retrieval – with the Terrier platform, 

and the Okapi BM25 weighting scheme – was used on 

filtered trials for finding documents related to the query 

genetic variants. The exclusion criteria were discarded, as 

we found examples of trials that excluded specific genes 

in this section. For one run (run SIBTMct2), we also used 

diseases and specific mutation keywords (such as 

“mutation”), in order to relax constraints. 

3. Results & Discussion 

In this section, we present the results for the scientific 

abstracts retrieval task and the clinical trials retrieval task. 

3.1 Scientific abstracts retrieval 

3.1.1 Tuning settings 

The selection of the best settings for our system relies on 

the topics and relevance judgments from 2017.   

The linear combination of the four different queries uses 

the following weights: results from Query 1 receives a 

weight of 0.7, results from Query 2 gets a weight of 0.9 

while results from Query 3 and Query 4 are attributed a 

weight of 0.1. Regarding the drug density run, we 

observed that a boost of 5 times for the cancer-related 

drugs performed the best. We obtained the best results 

when a weight of 0.05 was given to the drugs in the both 

the title and the abstract. Regarding the demographic 

information, the best results were obtained when a weight 

of 0.1 was given to this parameter. The scoring function 

of the binary classifier had the most impact on our results 

when using a modest boosting coefficient of 0.15. 

Although relatively modest, such a result suggests that 

further works might significantly improve the search task. 

Regarding the expansion to more general and specific 

diseases, we obtained the best results when a weight of 

0.05 was given to the expanded queries.  

3.1.2 Final results 

Results for the 50 topics are presented in Table 2. Metrics 

used for this task are infNDCG, P10 and R-Prec. The 

infNDCG (inferred non discounted cumulative gain) 

reflects the gain brought by a document based on its 

position in the ranked results. P10 (precision at rank 10) 

represents the proportion of relevant documents retrieved 

in the top ten results. It thus reflects the ability of the 

system to retrieve relevant results at high ranks. Finally, 

R-Prec (R-Precision) return the number of relevant 

documents returned in the top R document, where R 

corresponds to the number of relevant documents for the 

query.  

 infNDCG P10 R-Prec 

SIBTMlit1 0.526 0.586 0.354 

SIBTMlit2 0.537 0.614 0.356 

SIBTMlit3 0.538 0.618 0.357 

SIBTMlit4 0.541 0.626 0.357 

SIBTMlit5 0.528 0.632 0.340 
Table 2 Final results for the 50 topics for the scientific abstracts task 

Our first strategy resulted in an infNDCG of 0.526, a P10 

of 0.586 and a R-Prec of 0.354. When using in addition 

the demographic information, our results are improved 

regarding all measures, respectively of +2.1% for the 

infNDCG (0.537), +4.8% for the P10 (0.614) and +0.6% 

for the R-Prec (0.356). Using our precision medicine 

classifier also resulted in an improvement regarding all 

measures: +0.2% for the infNDCG (0.538), +0.7% for the 

P10 (0.618) and +0.3% for the R-Prec (0.357) which was 

our best results regarding R-Prec. The use of language 

models computed from word embeddings is promising 

but yet inconclusive. Indeed, within the top-10 runs, we 

were one of the rare teams who evaluated the impact of 

such methods. Further, the hierarchical query expansion 

had a positive impact regarding the infNDCG (+0.6%) 

and P10 (+1.3%). This run was our best result regarding 

infNDCG. Finally, the exact run resulted in mixed results: 

both the infNDCG and the R-Prec decreased (respectively 

-2.4% and -4.8%), while the P10 reached its best 

performance (+1%, 0.632).  

3.2 Clinical trials retrieval 

Results for the 50 topics are presented in Table 2 3. 

Metrics used for this task are infNDCG, P10 and R-Prec. 

As stated in the Methods section, the run 3 can be 

considered as the baseline. The run 1 investigated the use 

of title and summary for detecting, then filtering 

conditions. At last, the run 2 investigated the use of 

diseases and specific keywords for the Information 

Retrieval step based on gene and variant information. 

 



 infNDCG P10 R-Prec 

SIBTMct1 0.430 0.404 0.318 

SIBTMct2 0.328 0.330 0.250 

SIBTMct3 0.335 0.400 0.287 
Table 3 Final results for the 50 topics for the clinical trials task 

The best run is run 1 for all metrics. Compared to the 

baseline (run 3), improvement is +28% for infNDCG and 

+11% for R-Prec. This means that detecting the condition 

not only in the dedicated section, but also in title and 

abstract, leads to better performances. P10 is also slightly 

improved, while title and summary are likely to contain 

false positives. Comparing run 2 and baseline, we observe 

that our strategy of query expansion for Information 

Retrieval was unsuccessful. 

Conclusion 

While information regarding disease, gene and variant is 

usually retrieved in full text articles, scientific abstracts 

reporting on treatments do not always mention all this 

information. Therefore, the system we developed here for 

the scientific abstracts task is based on a constraint 

relaxing strategy, aiming to retrieve a maximum number 

of potentially relevant abstracts. Further strategies focus 

on the proper ranking of the retrieved abstracts. Results 

showed that the fourth first strategies all beneficed to our 

ranking, with slight improvements among runs. As 

expected, our final run, favoring publications fully 

compliant with the topic, resulted in our best results 

regarding precision at rank 10, while other measures were 

negatively impacted.  

For clinical trials, we investigated strategies for filtering 

unrelated clinical trials according to the condition 

(disease), and for retrieving trials relevant for the gene 

and variant using a search engine. For condition, our 

assumption since TREC 2017 was that the dedicated 

disease is included in the trial document in a structured 

way: the condition tag. All our experiments show that this 

is not true, and that relaxing constraints leads to better 

results. Results improve when using synonyms and 

hierarchy in the NCBI thesaurus, and when detecting 

condition in different parts of the trial (keywords, title, 

summary). For genes and variants, none of our query 

expansion strategies improved our baseline provided by 

the indexation of the collection by a search engine and the 

querying with genes and variants names. 
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